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ABSTRACT
Blood oxygen saturation (SpO2) is an important physiological sign

for evaluating a person’s health, where low levels of SpO2 can

indicate early signs of diseases such as COVID-19. While conven-

tional SpO2 measurement devices, such as pulse oximeters, require

skin-contact, advanced computer vision approaches can enable re-

mote SpO2 monitoring through a regular camera. In this paper, we

propose the first set of deep learning baselines for remote SpO2

measurement from facial videos and evaluate them on a public

benchmark database. We utilize a spatial-temporal representation

to encode SpO2 information recorded by conventional RGB cameras

and directly pass them into various convolutional neural networks

to predict SpO2. The proposed deep learning-based approaches sig-

nificantly outperform the existing statistical model for contactless

SpO2 measurement. We further analyze the impact of varying the

spatial-temporal representation color space, subject scenarios, ac-

quisition devices, and SpO2 ranges to set the first benchmarks for

the emerging research field.
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1 INTRODUCTION
Human vital signs, such as blood oxygen saturation (SpO2), heart

rate (HR), respiration rate, blood pressure, and body temperature,

are standard parameters to illustrate a person’s health status [7, 19].

Specifically, SpO2 readings indicate whether a person has enough
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oxygen supply to operate efficiently and is a common metric for

trauma management and early detection of diseases like hypox-

emia [1].

The COVID-19 pandemic has critically affected many across

the globe. According to [24, 46], monitoring only an individual’s

body temperature is insufficient for detecting COVID-19. Given

this limitation, researchers have investigated the feasibility of other

vital signs for pandemic control. SpO2 is a logical candidate for such

monitoring. It has been observed that COVID-infected individuals

displayed low SpO2 readings before the occurrence of other respi-

ratory symptoms [32, 39]. Additionally, some patients experienced

silent hypoxemia, in which they exhibit dangerously low SpO2 read-

ings without signs of respiratory distress [22]. Wide deployment

of an accurate tool that can conveniently, quickly monitor SpO2

in the general public would greatly enhance our ability to control

inflammatory infectious diseases such as COVID-19.

Nowadays, SpO2 is generally measured non-invasively through

the use of pulse oximeters and other wearable devices [37, 10, 11].

However, contact-based devices have usability limitations and are

impractical for long-term monitoring. Usage for extended periods

can be uncomfortable and unsuitable for people who have sensitive

skin [34]. Therefore, contactless approaches for SpO2 measurement

have emerged as an attractive alternative.

Over the last decade, several contactless SpO2 measurement

approaches have been proposed. Researchers have used a variety of

cameras, from high-quality monochrome cameras equipped with

special filters [43, 45, 16, 38, 44] to off-the-shelf webcams [3, 6], to

estimate SpO2 by capturing the subtle light intensity changes on the

face. While pulse oximeters utilize red and infrared wavelengths for

SpO2 estimation, these methods replaced the infrared wavelength

with the blue one since conventional cameras cannot capture it.

Deep learning techniques have achieved state-of-the-art for remote

measurement of physiological signs such as HR [9] and RR [5, 33].

However, remote SpO2 measurement is still at its infancy, with only

one deep learning-based paper using a 2D convolutional neural

network (CNN) to predict SpO2 from hand videos [23]. Additionally,

existing methods are all evaluated on private self-collected datasets,

preventing fair comparison of algorithmic performance.

In this paper, we utilize a spatial-temporal representation—that

is, a spatial-temporal map (STMap) as proposed in [28]—to encode

SpO2 information from RGB videos recorded by several consumer-

grade RGB cameras. Each STMap is fed into various 2D CNNs for

predicting SpO2 in an end-to-end manner. Moreover, we make use

of a public benchmark dataset, VIPL-HR [28, 27], to conduct our

experiments and analysis. The main contributions of our work are

listed as follows:
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• It is the first set of deep learning-based remote SpO2measure-

ment methods that are trained and evaluated on a large-scale

multi-modal public benchmark dataset of facial videos.

• It outperforms conventional contactless SpO2 measurement

approaches, showing potential for applications in real-world

scenarios.

• It acts as a strong baseline for contactless SpO2 measurement

and allows future works to be benchmarked fairly, facilitat-

ing the research process of this emerging field.

2 RELATEDWORKS
2.1 Contact-based SpO2 Measurement
Today, pulse oximeters are one of the most commonly used devices

for non-invasive monitoring of SpO2. The principle underlying

SpO2measurement through pulse oximetry is known as the Ratio of

Ratios method. Pulse oximeters contain Light Emitter Diodes (LEDs)

that generate two different light wavelengths, 660nm (red) and

940nm (infrared), to measure the different absorption coefficients

of oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin

(Hb) [20]. The photodetector inside the pulse oximeter analyzes

the light absorption of these two wavelengths and produces an

absorption ratio from which the SpO2, as a %, can be determined

from a table [2]. Healthy SpO2 values generally range from 95%

to 100% [25]. Equation 1 illustrates how pulse oximeters measure

SpO2.

𝑆𝑝𝑂2 =
𝐶𝐻𝑏𝑂2

𝐶𝐻𝑏 +𝐶𝐻𝑏𝑂2

× 100% (1)

where CHbO2 is the concentration of HbO2 and CHb is the concentra-

tion of Hb.

2.2 SpO2 Measurement with RGB Camera
Since smartphones have become ubiquitous in our daily lives, re-

searchers have explored the possibility of SpO2measurement through

a smartphone camera [37, 10]. In these methods, subjects place their

fingertips on top of the smartphone camera, and SpO2 is estimated

based on the reflected light captured by the camera. However, since

most smartphone cameras are visible imaging sensors—that is, they

only capture light in the visible portion of the spectrum—they

cannot capture infrared wavelengths. To overcome this deficiency,

Scully et al. [37] proposed to replace the infrared component of

the Ratio of Ratios method with the blue wavelength, since the

difference between the absorption coefficient of HbO2 and Hb are

very similar at the two wavelengths [23, 10, 36, 41]. Equation 2 il-

lustratres the Ratio of Ratios method for SpO2 with an RGB camera.

𝑆𝑝𝑂2 = 𝐴 − 𝐵 (𝐴𝐶𝑅𝐸𝐷 )/(𝐷𝐶𝑅𝐸𝐷 )
(𝐴𝐶𝐵𝐿𝑈𝐸 )/(𝐷𝐶𝐵𝐿𝑈𝐸 )

(2)

where ACBLUE and ACRED represent the standard deviation of the

blue and red color channels while DCBLUE and DCRED represent the

mean of the blue and red color channels. A and B are experimentally

evaluated coefficients that are determined by identifying the line

of best fit between the ratios of the red and blue channels and the

SpO2 estimated by a ground truth device.

2.3 Deep Learning-Based Remote Vital Signs
Monitoring

During the last decade, many deep learning-based approaches have

been developed for remote vital signs monitoring, with a majority

of works focusing on HR [9, 8, 18, 49, 31, 13], followed by RR [5, 33].

In general, the underlying principle behind these methods is remote

photoplethysmography (rPPG). When body tissues are illuminated

by surrounding light, tiny fluctuations in reflected light intensities

due to variation in the concentration of hemoglobin can be captured

by conventional cameras, producing the so-called rPPG signal [40].

After extracting the rPPG signal, subsequent vital signs such as HR

or RR can be obtained by further signal processing.

At the time of writing this paper, there is only one deep learning-

based method for remote SpO2 measurement [23]. It utilizes a 2D

CNN to predict SpO2 from a private dataset of hand videos. Novel

approaches for remote SpO2 measurement evaluated on a public

benchmark dataset would be highly beneficial for the research

community.

2.4 Spatial-temporal Representation for Vital
Signs Estimation

For remote physiological measurement from facial videos, the cru-

cial information is extracted from the changes in pixel intensity of

the subject’s face. Since contactless methods are inherently suscep-

tible to noise such as illumination changes and head movements [9],

a spatial-averaging operation is generally performed on the region-

of-interest (face) to improve the quality of the extracted signal.

Niu et al. [28] proposed a spatial-temporal representation, spatial-

temporal map (STMap), that is widely used for HR estimation as

well as face anti-spoofing [28, 29, 48, 26, 30]. The STMap, a low-

dimensional spatial-temporal representation in which physiological

information of the original video is embedded, can be directly fed

into a CNN, which learns and develops a function for mapping a

connection between the STMap and the output vital sign. To the

best of our knowledge, there are no existing works that have ap-

plied STMaps to predict SpO2. Given the success of spatial-temporal

representations for estimating HR, this motivates us to utilize a

similar approach for remote SpO2 measurement.

3 METHODS
3.1 Spatial-temporal Maps Generation
As shown in Figure 1, we followed an approach similar to that

proposed in [28] to generate spatial-temporal maps (STMaps). For

each video, we randomly sampled 225 consecutive frames and used

a face detector (OpenFace [4]) to obtain the subject’s face location.

The facial frames were downsampled to 128 x 128 using an average

pooling filter (kernel size = 16 and stride = 16) to reduce noise and

image dimension. Each frame was then split into 64 patches (8 x 8),

and the average value of the color channels within each patch was

extracted into a temporal sequence.

Other than the traditional RGB color space, an STMap can also be

generated from different or a combination of multiple color spaces

[29]. In this paper, we transformed the RGB color space to YUV and
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Figure 1: Process of generating a spatial-temporal map in RGB + YUV color spaces.

YCrCb through Equations 3 and 4 respectively:

𝑌 = 0.299 × 𝑅 + 0.587 ×𝐺 + 0.114 × 𝐵
𝑈 = −0.169 × 𝑅 − 0.331 ×𝐺 + 0.5 × 𝐵 + 128

𝑉 = 0.5 × 𝑅 − 0.149 ×𝐺 − 0.081 × 𝐵 + 128

(3)

𝑌 = 0.299 × 𝑅 + 0.587 ×𝐺 + 0.114 × 𝐵
𝐶𝑟 = (𝑅 − 𝑌 ) × 0.713 + 128

𝐶𝑏 = (𝐵 − 𝑌 ) × 0.564 + 128

(4)

The 𝑐 color dimensions for each face patch were concatenated

to produce the final spatial-temporal representation of size 225 x

𝑐 x 64. Figure 2 shows a visual example of the STMaps generated

from the different color spaces.

(a) RGB map (b) YUV map (c) YCrCb map

Figure 2: Example of the spatial-temporal maps (STMaps)
in RGB, YUV and YCrCb color spaces generated from the
VIPL-HR dataset.

3.2 SpO2 Estimation Using CNNs
We framed SpO2 estimation as a regression problem and utilized 2D

CNNs to predict a single SpO2 value from an STMap. The STMaps

were resized to 225 x 225 to match the input size of the CNNs. We

selected and compared three state-of-the-art CNN architectures, in-

cluding ResNet-50 [12], DenseNet-121 [14] and EfficientNet-B3 [42],

that were pretrained with the ImageNet [35] dataset. Table 1 shows

the model complexity of the selected models.

Table 1: Number of parameters and floating point operations
per second (FLOPs) of the selected CNN models.

Model Params FLOPs

EfficientNet-B3 [42] 9.2M 1.0B

ResNet-50 [12] 26M 4.1B

DenseNet-121 [14] 8M 5.7B

3.3 Dataset
We trained and tested our methods on STMaps generated from

the VIPL-HR dataset [28, 27], a public-domain dataset originally

proposed for remote HR estimation. Since SpO2 readings were

also recorded during the data collection, VIPL-HR can be used

for benchmarking contactless SpO2 measurement methods as well.

The dataset contains 2378 RGB and 752 near-infrared (NIR) facial

videos of 107 subjects (79 males and 28 females) recorded by four

acquisition devices (web camera, smartphone frontal camera, RGB-

D camera, and NIR camera). The length of each video is around 30

seconds, with a frame rate of around 30 frames per second.

For our experiments, we utilized RGB videos of subjects in nine

scenarios, including subjects sitting naturally: (1) at a distance of

1 meter, (2) while performing large head movements, (3) while

reading a text aloud, (4) in a dark environment, (5) in a bright en-

vironment, (6) at a long distance (1.5 meters instead of 1 meter),

(7) after doing exercise for 2 minutes, (8) while holding the smart-

phone, and (9) while holding the smartphone and performing large

head movements. Specific details of the data collection process is

listed in [27]. The large variety of scenarios will contribute to the

generalizability of the proposed methods for different applications.

Figure 3 illustrates the distribution of ground truth SpO2 values for

STMaps generated from the VIPL-HR dataset.

3.4 Evaluation Metrics
We utilized the following performance metrics to evaluate the per-

formance of SpO2 prediction:

• Mean absolute error (MAE) =

∑𝑁
𝑖=1 |𝑥𝑖−𝑦𝑖 |

𝑁

• Root mean square error (RMSE) =

√︃∑𝑁
𝑖=1 (𝑥𝑖−𝑦𝑖 )2

𝑁

where xi is the predicted SpO2 and yi is the ground truth SpO2 in

units of percent (%).
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Table 2: Performance of selected deep learning models trained on STMaps generated from different color spaces for SpO2

estimation.

Model RGB YUV RGB + YUV YCrCb

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

(%) (%) (%) (%) (%) (%) (%) (%)

EfficientNet-B3 [42] 1.037 1.487 1.051 1.488 1.012 1.473 1.066 1.525

ResNet-50 [12] 1.109 1.568 1.098 1.532 1.089 1.499 1.099 1.525

DenseNet-121 [14] 1.118 1.579 1.110 1.579 1.087 1.538 1.104 1.589

Figure 3: Ground truth SpO2 (%) distribution of STMaps gen-
erated from the VIPL-HR dataset.

3.5 Training Settings
To ensure a fair evaluation process, we performed a 70:30 train-

test split based on subjects. We randomly sampled 225 consecutive

frames 70 times for each video in the train and test sets to generate

STMaps. Figure 4 depicts the distribution of SpO2 values of STMaps

in the train and test sets.

Figure 4: SpO2 (%) distribution of STMaps in the train and
test sets.

Table 3: Performance of deep learning (EfficientNet-B3 + RGB
& YUV) and Ratio of Ratios methods for SpO2 estimation.

Method MAE (%) RMSE (%)

EfficientNet-B3 + RGB & YUV 1.012 1.473
Ratio of Ratios

(A = 125, B = 26) [16, 6] 3.334 5.137

Ratio of Ratios

(A = 101.6, B = 5.834) [3] 1.838 2.489

For model training, we used the AdamW optimizer [21] and

batch size of 32 on a NVIDIA RTX 3080 GPU. The initial learning

rate was set to 0.0001 with a weight decay of 0.001. The RMSE loss

function was also utilized for all models.

4 RESULTS AND DISCUSSION
4.1 Performance on Different Color Spaces
As mentioned in [28, 47], selecting an appropriate color space of the

spatial-temporal representation can reduce head motion artifacts

and improve the overall signal quality. To investigate the impact of

color space on SpO2 estimation, we compared the performance of

STMaps generated from RGB, YUV, concatenated RGB and YUV,

and YCrCb color spaces.

Among the proposed methods, EfficientNet-B3 trained on con-

catenated RGB and YUV STMaps (EfficientNet-B3 + RGB & YUV)

achieved the lowest MAE and RMSE (Table 2). Although all models

displayed the lowest MAE and RMSE when trained on concate-

nated RGB and YUV STMaps, the performance across different

color spaces is very similar. Further investigation is required to

evaluate whether there is a significant difference between a model’s

performance of SpO2 estimation and the color space of the spatial-

temporal representation.

4.2 Performance on Different Subject Scenarios
and Acquisition Devices

As all models achieved a similar performance in the previous exper-

iment, we used EfficientNet-B3 + RGB & YUV as a deep learning

benchmark for subsequent analysis. We evaluated the performance

of the deep learning method against the conventional Ratio of Ra-

tios algorithm for contactless SpO2 estimation (Equation 2) with

coefficients A and B from previous works [3, 16, 6]. We further

investigated the performance of the methods in different subject

scenarios and acquisition devices in the VIPL-HR dataset.
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Table 3 shows that the deep learning method significantly out-

performs the conventional Ratio of Ratios method on the VIPL-HR

dataset. Moreover, the results are within the error range (4%) ac-

cording to the international standard for a pulse oximeter that can

be used for clinical purposes [15], indicating the potential of deep

learning-based methods for real-world applications.

Figure 5: Mean Absolute Error (MAE) in percent (%) of remote
SpO2 estimation methods for different subject scenarios of
the VIPL-HR dataset.

Figure 6: Root Mean Square Error (RMSE) in percent (%) of
remote SpO2 estimation methods for different scenarios of
the VIPL-HR dataset.

Figure 5 and 6 show the performance of the tested methods in

different subject scenarios in the VIPL-HR dataset (Section 3.3).

The deep learning method consistently achieved the lowest MAE

(Figure 5) and RMSE (Figure 6) in all cases. Moreover, it is worth

noting the significant performance difference between methods in

Figure 7: Mean Absolute Error (MAE) in percent (%) of remote
SpO2 estimation methods of different acquisition devices (1
= Web Camera, 2 = Smartphone Frontal Camera, 3 = RGB-D
Camera) from the VIPL-HR dataset.

Figure 8: Root Mean Square Error (RMSE) in percent (%) of
remote SpO2 estimation methods of different acquisition
devices (1 = Web Camera, 2 = Smartphone Frontal Camera, 3
= RGB-D Camera) from the VIPL-HR dataset.

Scenarios 4 and 5, indicating the deep learning method’s potential

to address illumination variations.

Figure 7 and 8 illustrate the performance of the tested methods

on different acquisition devices in the VIPL-HR dataset, including:

(1) Logitech C310 web camera (960 x 720, 25fps), (2) HUAWEI P9

frontal camera (1920 x 1080, 30fps), and (3) RealSense F200 RGB-D

camera (1920 x 1080, 30fps). Consistent with the results of subjects

in different scenarios, the deep learning method achieved the low-

est MAE (Figure 7) and RMSE (Figure 8) for all acquisition devices.

Meanwhile, it can be seen that the conventional Ratio of Ratios
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Table 4: Performance of deep learning (EfficientNet-B3 + RGB
& YUV) and Ratio of Ratios methods for SpO2 estimation in
normal (≥ 95%) and abnormal (< 95%) ranges.

Method Normal Abnormal

MAE RMSE MAE RMSE

(%) (%) (%) (%)

EfficientNet-B3 + RGB & YUV 0.978 1.288 3.077 3.563
Ratio of Ratios

(A = 125, B = 26) [16, 6] 3.140 4.972 6.798 7.496

Ratio of Ratios

(A = 101.6, B = 5.834) [3] 1.690 2.264 4.482 5.034

method is likely affected by the resolution of the acquisition de-

vice, as shown in its mediocre performance when tested on videos

captured by the web camera (lowest resolution).

4.3 Performance over Different SpO2 Ranges
Inspired by Li et al. [17], we analyzed the performance of remote

SpO2 estimation methods over different SpO2 ranges. The SpO2

value of a healthy person is usually between 95% to 100%. Based on

this classification, we separated the data into two groups: normal

(SpO2 ≥ 95%) and abnormal (SpO2 < 95%).

From Table 4, we observe that the deep learning method out-

performs the Ratio of Ratios method in both normal and abnormal

SpO2 ranges. However, the model’s MAE and RMSE in the normal

range (0.978 and 1.288, respectively) are significantly lower than

those in the abnormal range (3.077 and 3.563, respectively). The

model’s increase in prediction error in the abnormal range may be

due to the distribution of the training dataset containing a smaller

amount of low SpO2 values (Figure 4). Similar to the conclusion

drawn in [17] for predicting HR values in the higher and lower

ranges, the challenge of predicting abnormal SpO2 measurements

should be a focus of future works.

5 CONCLUSION AND FUTUREWORK
In this paper, we proposed the first deep learning benchmarks

for remote SpO2 measurement from facial videos in the VIPL-HR

public database. We encoded the facial videos into STMaps, low-

dimensional spatial-temporal representations containing physiolog-

ical information of the subject, and directly used them as the model

inputs for training and testing. We then investigated the model

performances using different STMap color spaces, on different sub-

ject scenarios, acquisition devices, and over different SpO2 ranges.

The proposed deep learning methods outperform the conventional

Ratio of Ratios technique in all cases, setting a solid baseline for

upcoming research.

For future work, we believe that improving the face detection

process can generate more representative STMaps and enhance

the model’s robustness, especially for videos of subjects with large

head movements. We expect that a face detector that operates on a

per-frame basis, while taking into consideration the dimensional

requirements to generate the STMap, can optimize the signal-to-

noise ratio of the spatial-temporal representation. Furthermore, as

demonstrated by Niu et al. [29], region-of-interest selection can be

incorporated to capture areas that may contain a stronger physio-

logical signal. Additionally, we would like to investigate the impact

of resizing the STMaps to match the CNN’s input dimensions, as

this procedure may have introduced additional noise to the model.

Last but not least, we would like to collect more data of subjects

with abnormal SpO2 readings or simulate low SpO2 values through

a similar approach in [23]. Additional data coverage of subjects with

abnormal SpO2 values can contribute to the development of more

robust and accurate models for contactless SpO2 measurement.
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