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Abstract: Remote Photoplethysmography (rPPG) is a contactless method that enables the detection of
various physiological signals from facial videos. rPPG utilizes a digital camera to detect subtle changes
in skin color to measure vital signs such as heart rate variability (HRV), an important biomarker
related to the autonomous nervous system. This paper presents a novel contactless HRV extraction
algorithm, WaveHRV, based on the Wavelet Scattering Transform technique, followed by adaptive
bandpass filtering and inter-beat-interval (IBI) analysis. Furthermore, a novel method is introduced to
preprocess noisy contact-based PPG signals. WaveHRV is bench-marked against existing algorithms
and public datasets. Our results show that WaveHRV is promising and achieves the lowest mean
absolute error (MAE) of 10.5 ms and 6.15 ms for RMSSD and SDNN on the UBFCrPPG dataset.

Keywords: heart rate variability; remote photoplethysmography; wavelet scattering transform;
RMSSD; SDNN; Baevsky stress index

1. Introduction

Heart rate variability is the variation in time between consecutive heartbeats. It is
closely related to the autonomous nervous system (ANS), actual heart sound, blood pres-
sure, and mental well-being [1]. Traditionally, HRV has been measured using a contact-based
electrocardiogram (ECG), which may cause some patients to feel uncomfortable because it re-
quires attaching electrodes to various parts of the body. Recently, non-contact measurement
of HRV has gained momentum due to its user-friendly nature and suitability. Contactless
HRV can be obtained from an optical technique known as remote plethysmography (rPPG)
by using an off-shelf digital camera.

In recent years, there has been a growing interest in heart rate variability (HRV) esti-
mation using remote photoplethysmography (rPPG), and many researchers have focused
on developing robust and accurate algorithms for this purpose. Typically, a pipeline for
rPPG-based HRV estimation includes several stages, such as face detection and tracking,
skin segmentation, region of interest (ROI) selection, and rPPG construction [2–5]. In
addition, there are numerous post-processing steps that can be applied to clean, filter, or
denoise the rPPG signal to improve the accuracy of HRV estimation.

One such study by Mitsuhashi et al. [6] obtained the rPPG signal from facial videos
using the spatial subspace rotation (2SR) method [7]. 2SR is an algorithmic method that
extracts a pulse signal by calculating the spatial subspace of skin pixels and measuring its
temporal movement, and it does not require skin-tone priors. They subsequently applied
detrending, heart-rate frequency bandpass filtering (0.75–3 Hz), interpolation, and valley
detection to source HRV and estimate stress. Martinez-Delgado et al. [8] employed color
amplification on the red channel and peak detection to calculate multiple time-domain and
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frequency-domain HRV metrics. Qiao et al. [9] utilized independent component analysis
(ICA) to obtain the rPPG signal and subsequently applied detrending, normalization, and
moving average filter to further clean and smooth the rPPG signal. Afterward, they acquired
heart rate and time-domain HRV metrics by detecting the peaks of the cleaned rPPG signal.
Li et al. [2] obtained the rPPG signal using a CHROM algorithm [10], a method that exploits
color differences in RGB channels to eliminate specular reflection and reduce noise due to
motion. Then, they proposed a post-processing denoising step called Slope Sum Function
(SSF), which enhances the quality of the signal and facilitates peak detection by increasing
the upward trend and decreasing the downward trend of the rPPG signal. Lastly, heat rate
and time-domain HRV metrics were evaluated based on the peak detection results.

A wavelet-based approach was proposed by Huang et al. [3] and He et al. [4].
Huang et al. [3] sourced the rPPG signal by utilizing the CHROM method [10] and further
added a post-processing step based on a continuous wavelet transform, termed CWT-BP
and CWT-MAX. CWT-BP is defined as a bandpass filter (0.75–4 Hz), while CWT-MAX is
a denoising step based on the scale of the CWT coefficients. During the CWT-MAX step,
windows from the signal are chosen and coefficients that have the largest values within
a particular window are selected to reconstruct the signal by inverse CWT. He et al. [4]
further improved CWT-based denoising methods by introducing CWT-SNR, which se-
lects coefficients based on the signal-to-noise ratio of the reconstructed rPPG signal. Both
methods implemented peak-detection algorithms to acquire time-domain HRV metrics and
heart rate.

In another research, Gudi et al. [5] sourced the rPPG signal by using the plane orthogonal
to skin (POS) [11], a method that projects the pulsatile part of the RGB signal to the plane
orthogonal to the skin thereby reducing specular and motion noise. Then they applied
further motion noise suppression and narrow fixed bandpass filtering to clean the rPPG
signal and subsequently extracted the HRV by detecting peaks and applying HRV formulae.
They calculated both time-domain and frequency-domain metrics and benchmarked and
tested their algorithm on numerous public datasets. Furthermore, they introduced a method
to remove noise artifacts from ground truth PPG signals. In another study, Pai et al. [12]
introduced a novel approach HRVCam. HRVCam applied signal-to-noise ratio (SNR) based
adaptive bandpass filtering to the rPPG signal and then used a discrete energy separation
algorithm (DESA) to calculate various frequency bands. These instantaneous frequencies are
transformed to the time domain to evaluate time-domain HRV metrics. Overall, traditional
methods have focused mostly on post-processing steps such as bandpass filtering, detrending,
and continuous wavelet transform to clean noisy rPPG signals.

A deep learning approach was presented by Song et al. [13]. According to this ap-
proach, first, a candidate rPPG signal is calculated with traditional algorithmic methods
such as CHROM [10]. Then, a generative adversarial network (GAN) is employed to
filter out and denoise the signal by generating a cleaner version of that rPPG signal. An
additional study by Yu et al. [14] proposed an end-to-end deep learning model to obtain
an rPPG signal. Their model is based on different 3D-CNN and LSTM networks and
benchmarked against heart rate and frequency-domain HRV metrics.

All listed HRV algorithms suffer from relatively poor results when compared with
ground truth contact-based values. This may be due to limitations in the non-contact
measurement techniques used by these algorithms, which can result in inaccuracies and
lower overall performance. Additionally, deep learning models require a large amount of
data to train on, which can be expensive. Since HRV is highly sensitive to noise, improved
algorithms should be devised to decrease the gap between contact and camera HRV.
Therefore, in this paper, we introduce the following:

1. A novel HRV algorithm, WaveHRV, based on the Wavelet Scattering Transform tech-
nique, followed by adaptive bandpass filtering and statistical analysis of inter-beat-
intervals (IBIs);

2. Validation of our algorithm on various public datasets, which achieved promising results;
3. An innovative preprocessing step to filter out noisy ground truth data.
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2. Method

The heart rate variability extraction pipeline from a video is presented in Figure 1.
Initially, the subject’s face is detected and tracked over time by Medipipe FaceMesh [15].
This is followed by a process of skin segmentation to remove non-skin regions that would
improve signal quality. Then, the meanRGB signal is acquired by taking the average of
each frame spatially and concatenating them temporally. This meanRGB signal is fed to the
plane orthogonal to skin (POS) [11] algorithm to get the rPPG signal candidate. POS is a
robust method that projects the pulsatile part of the RGB signal to the plane orthogonal
to the skin while employing division and multiplication of different channels to cancel
out noise due to motion and other specular artifacts that are assumed to affect all color
channels equally. The rPPG signal is interpolated to the nearest power of 2 framerate to
make it easier to work with the scattering transform and make the signal spaced equally in
time. Subsequently, scattering transform (Section 2.1), windowing method (Section 2.2),
and IBI analysis (Section 2.3) are applied to obtain HRV from the interpolated rPPG signal.
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Figure 1. Pipeline to extract heart rate variability from facial videos.

2.1. Scattering Transform

The scattering transform (ST) [16] is a complex-valued convolutional neural network
(CNN) whose filters are fixed wavelets that has modulus as non-linearity and averaging as
pooling. It is invariant to translation, frequency shifting, and change in scale. The wavelet
scattering transform can be constructed by taking a signal and passing it through a series
of wavelet filters called filter banks and modulus non-linearity. Each wavelet within the
filter bank is derived from a single wavelet by changing frequency and time. The output of
each layer is then passed through another set of filter banks and modulus non-linearity,
creating a hierarchical structure of representations. Each layer captures different levels of
time and frequency information, with the first layer capturing the energy density of the
frequencies over time. Nth order coefficients are given by

SN(t, λ1, . . . λN) = |r(t) ∗ ψλ1| . . . ∗ ψλN| ∗ φ (1)

where r(t) is a signal, ψλ is a wavelet of scale λ, φ is average pooling, | . . . | is complex-
valued modulus operation and ∗ is convolutional operation. In this paper, the Kymatio
Library [17] was used to implement scattering transform, and the Morlet wavelet was
chosen to convolve with the signal, which is given by:

ψw(t) = Kπ−1/4eiωte−t2/2 (2)
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where K is a normalization constant, ω is frequency, and t is time. Morlet wavelet has been
previously employed in PPG research [18] because its Gaussian envelope ensures that the
Morlet wavelet is localized in both time and frequency domains, making it suitable for
analyzing signals with non-stationary and time-varying properties.

Lastly, an example of coefficients of first-order ST of a PPG signal with a pooling
size of 16 s and filter bank of 20 is given in Figure 2. Frequencies in the y-axis increase
exponentially, while time in the x-axis is given as discreet numbers that are multiples of
16 s due to chosen pooling size.
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2.2. Windowing

The interpolated rPPG signal is first cleaned with Butterworth bandpass filtering
of order 7 with band size 0.7–5 Hz to acquire rPPGclean. Then, the first-order scattering
transform is applied to the obtained signal as explained in Section 2.1 with a pooling size
of 16 s and filter bank of 20. The selection of the pooling size and number of wavelets
within the filter bank is task dependent. In the context of our study, simulations revealed
that higher frequency resolution generated more favorable outcomes than time resolution.
Consequently, a pooling size of 16 s was deemed optimal as it represented a balance
between time and frequency resolution. Furthermore, an augmented number of wavelets
in the filter bank correlates with an increased frequency resolution. However, this may pose
two challenges: firstly, higher computational costs, and secondly, increasing the number of
wavelets in the filter bank usually enhances resolution in the higher frequency ranges that
are beyond the heart rate region.

Afterward, a windowing step, shown in Figure 3, is applied on rPPGclean in the
following manner:
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1. For each window of size w calculate the energy around the first harmonic by the
given equation:

E =
w− x

w
Ei−1 +

x
w

Ei (3)

where w is window size, Ei is the energy at time, i, and x is the difference between right
end of the window and time i.

2. Construct K-Means (K = 3) clustering with frequency and energy, E, as an input and
k-mean++ as a centroid initialization to obtain a narrow band, as shown in Figure 4. The
centers of the clusters are shown in red in the Figure 4. Then, the band size is [left centroid,
right centroid].
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3. Apply Butterworth bandpass filtering on the windowing signal with previously
obtained bands.

4. Subtract the mean of the windowing signal from the windowing signal itself to
retain only the pulsatile part and remove the diffuse part.

5. Slide window over whole signal with window size = w and step size = s, which can
be optimized for different datasets. For instance, in Figure 3, w = 14.5 s and s = 2 s.

6. Reconstruct the cleaned rPPG signal from the windowing segments by adding
the segments.

Due to sliding windows, peaks on the edges will be smaller than the rest of the signal.
This may result in peak detection issues that can be solved by multiplying both edges of
the signal with coefficients (c), as shown in the pseudo-code (Algorithm 1) below:

Algorithm 1: peak amplification of the two ends of the signal

w← windowsize
s← stepsize
j← 0
R← signal
whilej≤w/s do

c← 2
w

s(j + 1)
R[s× j : s× (j + 1)]← R[s× j : s× (j + 1)] × c
j← j + 1

end while

2.3. IBI Analysis

Peaks of the reconstructed signal are detected with the automatic multiscale-based
peak detection (AMPD) [19] algorithm and inter-beat-intervals (IBIs) are calculated. Then,
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refined IBIs are calculated by removing physically impossible regions or misplaced peaks
and retaining only those IBIs that satisfy the criteria below:

1. ∀IBI ∈ [400 ms, 1300 ms] **
2. ∀IBI ∈ mean(IBI) ± 0.4mean(IBI)
3. Non-overlapping window is slid over IBIs with window size 10. IBIs in each window

should satisfy ∀IBIwindow ∈ mean(IBIwindow) ± 0.2mean(IBIwindow).

** The boundaries for the IBIs should be chosen based on the task. In this research, we
estimate the HRV of adults in a seated position.

3. Metrics
3.1. HRV Metrics

SDNN (standard deviation of NN intervals) is a time-domain HRV metric related to
the sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) and
associated with physical wellness such as blood pressure regulation, heart, vascular tone,
and gas exchange [1]. Multiple studies show that [1,20] the range for short-term SDNN
(<5 min) is 32–93 ms and it is given by

SDNN =

√√√√ 1
N − 1

N

∑
i=1

(IBIi − IBImean)
2 (4)

where IBI is the inter-beat interval, and IBImean is the mean of the inter-beat interval.
RMSSD (root mean square of successive differences) is a time-domain HRV metric

related to PNS [1] and strongly related to human productivity and energy levels. Short-term
RMSSD (<5 min) lies within 19–75 ms [1,20]. It is given by

RMSSD =

√√√√ 1
N − 1

N−1

∑
i=1

(IBIi+1 − IBIi)
2 (5)

Baevsky SI (Baevsky stress index) is a stress metric that represents the mental or
physical stress one is experiencing. It is very sensitive to SNS and has a range of 50 to
1000–1500 depending on stress level and stress-related illnesses [21]. It is derived using
time-domain HRV metrics as follows:

BaevskySI =
AMo(IBI)

2 ∗Mo(IBI) ∗MxDMn(IBI)
(6)

where AMo(IBI) is mode amplitude of IBIs, Mo(IBI) is the mode of the IBIs, and MxDMn(IBI)
is the difference between the maximum and minimum IBI.

Finally, LF/HF (low frequency/high frequency) is a frequency-domain HRV metric that
represents the balance between the PNS and the SNS [1]. It is calculated by transforming
the spectral analysis of IBIs to the frequency domain with the Fast Fourier Transform (FFT).
The LF [0.04–0.15 Hz] represents the SNS and the HF [0.15–0.4 Hz] represents the PNS. This
is considered a metric that provides insight into the equilibrium of the autonomic nervous
system and the resilience of the body to changes, stress, and anxiety [1]. LF/HF values
range between 1.1 and 11.6 [1,20].

3.2. Evaluation Metrics

In this study, we employed several metrics to assess the performance of our proposed
model. The metrics used in the study include the follofing:

MAE (mean absolute error) is a commonly used metric that measures the average
absolute difference between predicted and actual values. MAE is defined as

MAE =
1
n ∑|y− ŷ| (7)
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where n is the number of data points, y is the actual value, and ŷ is the predicted value.
SD (standard deviation) is a measure of the amount of variation or dispersion in a set

of values. SD is defined as
SD = sqrt(

1
n ∑(y− ŷ)2) (8)

where n is the number of data points, y is the actual value, and ŷ is the predicted value.
r (Pearson correlation coefficient) is a measure of the linear correlation between

two variables. PCC is defined as

r =
Cov(y, ŷ)

SD(y)SD(ŷ)
(9)

where y is the actual value, ŷ is the predicted value, and Cov( . . . ) is the covariance.
The paired t-test is a statistical test that compares the means of two related samples. In

this study, the paired t-test was used to evaluate the significance of the differences between
our model’s predicted values and ground truth values. The paired t-test is defined as

t =
(d− 0)

(
SDd

sqrt(n)
)

(10)

where d is the mean of the differences between the predicted and actual values, 0 is the
null hypothesis value, SDd is the standard deviation of the differences, and n is the number
of data points.

4. Dataset

To validate the algorithm, we used our private dataset (Stroop) and three publicly
available datasets. The summary of these datasets is shown in Table 1.

Table 1. Summary of datasets used in this paper.

Dataset # Videos Fps Resolution Compressed Ground Truth

Stroop 42 60 640 × 480 no PPG (60 Hz)
UBFC rPPG [22] 42 30 640 × 480 no PPG (30 Hz)

VIPL-HR [23] 1968 25/30 1920 × 1080 yes PPG (60 Hz)
MAHNOB-HCI [24] 1095 60 780 × 580 yes ECG (256 Hz)

4.1. Stroop Dataset

Fourteen adults of ages ranging from 18 to 33 and with varying skin tones took part in
our experiment. Informed consent was obtained from all subjects. Each subject was seated
one meter in front of a Logitech Brio camera that recorded video at 60 fps in ambient room
lighting. A CONTEC CMS-60C pulse oximeter set at a frequency of 60 Hz was used to
record the ground truth PPG signal. The Stroop test [25] was used to induce cognitive stress
and allow for HRV measurement under different experimental stages. In the Stroop test,
participants are presented with a series of trials, where each trial consists of a color name,
such as “red,” “blue,” and “green” printed in a certain ink color that may or may not match
the word itself. The task requires the participant to identify the ink color while ignoring
the word itself within a short span of time. The test consisted of three parts: the Rest Stage
(1 min), the Stroop test with sound stimulus (3 min), and the Stroop test without sound
stimulus (3 min). Subjects were allowed to relax for 2 min between each part. During the
Stroop test with sound stimulus, participants heard a pleasant or irritating audio sound
depending on whether they gave the correct answer.

4.2. Publicly Available Datasets

UBFC rPPG [22] consists of 42 subjects and 42 videos. Each video is approximately a
minute long, 30 fps, and uncompressed. Videos are recorded in uniform, ambient lighting,
and subjects play math tests to induce stress and increase heart rate.
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VIPL-HR [23] consists of 107 subjects and 2378 videos. Video lengths range from
10 s to 1 min. Videos are compressed and recorded by three different devices. Subjects
are recorded under seven different scenarios: stable scenario, talking scenario, large head
movements, dark lighting, bright lighting, long distance scenario, and after exercise. In
this paper, we only used videos that are longer than 16 s because it is difficult to obtain
meaningful HRV results based on measurements that are less than 15 s. The number of
selected videos is 1968.

MAHNOB-HCI [24] consists of 27 subjects and 3465 videos. To induce different
emotions and feelings of stress, subjects watch different videos while sitting in front of the
camera. Videos are compressed and range from 5 s to 3.5 min. In this dataset as well, only
videos that are longer than 16 s are selected. The number of selected videos is 1095.

4.3. Dataset Preprocessing

HRV is a sensitive biomarker and even a slight disturbance during the data collection
process can alter the outcome dramatically. This paper [26] shows the impact of false peaks
on HRV measurement and points out that if a small percentage of peaks are dislocated,
HRV results will be significantly different. Therefore, noisy ground truth data must be
preprocessed before being used as a benchmark to compare with camera HRV. There are
several reasons why ground truth data is noisy: disconnection of the ground truth device,
poor connection of electrodes with the body, body motion during data collection, slight
motion of the fingers inside a pulse oximeter, etc. Examples of a noisy and clean PPG signal
are shown in Figure 5. To filter out these noisy ground truth data, we came up with criteria
based on biological restrictions and data analysis. First, since we are calculating HRV from
the face, any obstacle between the face and the camera leads to discontinuity in the signal.
Therefore, this type of data is discarded. Second, if the measured heart rate is beyond
physiological and biological limits at any point, then the subject is disconnected from the
ground truth data-collecting device. This kind of ground truth data cannot be used as
a reference. Third, van Gent et al. [26] demonstrate that false peaks change HRV results
significantly and that removing them is an optimal solution. They suggest removing IBIs
that are off by 30% from the meanIBI of the chosen segment. Finally, this paper [1] reports
results of more than 20 studies concluding that short-term SDNN and RMSSD (<5 min)
should be less than 92 ms and 75 ms respectively. Contact-based PPG and ECG HRV results
that are beyond the physiologically possible region should be removed. These criteria can
be summarized as follows:

1. Remove data with a covered face at any instant in time
2. Remove data that have HR /∈ [45, 200]
3. Remove IBI /∈ mean(IBIsegment) ± 0.3mean(IBIsegment), where segment is 20–30 IBIs
4. Remove data that have SDNN > 100 ms or RMSSD > 100 ms
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5. Results
5.1. Benchmarking WaveHRV

We reported the results of WaveHRV on publicly available datasets in Table 2 for
SDNN and Table 3 for RMSSD. All other algorithms except FaceRPPG reported their
results on the UBFC rPPG dataset only. It can be seen from Tables 2 and 3 that WaveHRV
outperformed all other methods by a significant margin except FaceRPPG RMSSD in UBFC
rPPG dataset. However, it should be noted that all FaceRPPG results are benchmarked
against the cleaned and filtered version of datasets. Furthermore, we observed that VIPL-
HR and MAHNOB-HCI have large MAEs and even larger standard deviations.

Table 2. Performance of SDNN measurement for the UBFC rPPG, VPIL-HR, and MAHNOB-HCI
datasets. Superior performance is highlighted in green.

Dataset UBFC rPPG VIPL-HR MAHNOB-HCI

MAE ± SD (ms) MAE ± SD (ms) MAE ± SD (ms)

WaveHRV 10.5 ± 7.9 29 ± 45 69 ± 234

FaceRPPG * [5] 19 ± 14.5 49 ± 45 107 ± 51

SSF [2] 25 - -

PulseGAN [13] 24.3 - -
* The results of this method are given against a cleaned version of the data.

Table 3. Performance of RMSSD measurement for the UBFC rPPG, VPIL-HR, and MAHNOB-HCI
datasets. Superior performance is highlighted in green.

Dataset UBFC rPPG VIPL-HR MAHNOB-HCI

MAE ± SD (ms) MAE ± SD (ms) MAE ± SD (ms)

WaveHRV 16 ± 14 41 ± 70 93 ± 317

FaceRPPG * [5] 16 ± 22.5 73 ± 57.8 108 ± 51

SSF [2] 47 - -
* The results of this method are given against a cleaned version of the data.

5.2. WaveHRV on the Preprocessed Datasets

After filtering out noisy ground truth data according to the criteria mentioned in
Section 4.3, we secure the results presented in Table 4. When comparing the results of
Table 4 against Tables 2 and 3, we see that the proposed ground truth preprocessing method
performed well. MAE of SDNN of UBFC rPPG decreased from 10.5 ms to 6.15 ms, whereas
RMSSD decreased from 16 ms to 10.46 ms. The effect of the proposed criteria is very
noticeable on MAHNOB-HCI and VIPL-HR. By looking at the tables, we can see that the
SDNN MAE of VIPL-HR decreased from 29 ms to 13.3 ms, and RMSSD MAE of VIPL-HR
decreased from 41 ms to 15.1 ms. As for MAHNOB-HCI, SDNN MAE decreased from
69 ms to 17.5 ms, while RMSSD MAE decreased from 93 ms to 21.5 ms. When we look at the
SD of VIPL-HR and MAHNOB-HCI, we see that the SD of VIPL-HR decreased from 45 ms
to 11.1 ms for SDNN and from 70 ms to 13.1 ms for RMSSD. The SD of MAHNOB-HCI
decreased from 234 ms to 12.5 ms for SDNN and from 317 ms to 14.5 ms for RMSSD.

Table 4. SDNN and RMSSD performance of WaveHRV on Preprocessed Datasets.

Dataset Stroop UBFC rPPG VIPL-HR MAHNOB-HCI

MAE ± SD MAE ± SD MAE ± SD MAE ± SD

SDNN (ms) 7.0 ± 4.80 6.15 ± 5.69 13.3 ± 11.1 17.5 ± 12.5

RMSSD (ms) 11.35 ± 9.13 10.46 ± 9.32 15.1 ± 13.1 21.5 ± 14.5
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Bland-Altman plots of SDNN and RMSSD of three preprocessed datasets namely
UBFC rPPG, VIPL-HR, and Stroop are shown in Figure 6b, Figure 7b, Figure 8, and Figure 9,
respectively. It can be noticed from Figure 6b that for the UBFC rPPG dataset, the mean
difference between ground truth and WaveHRV SDNN is 2.62 ms, and the paired t-test
p-value = 0.05. Similarly, hypothesis testing for RMSSD gives p-value = 0.24. This implies
that for a 95% confidence interval (CI), the average WaveHRV SDNN and RMSSD are
similar or equal to the average ground truth SDNN and RMSSD. Correlation plots of SDNN
and RMSSD for preprocessed UBFC rPPG are demonstrated in Figures 6a and 7a. It can be
noted that the Pearson correlation coefficients between WaveHRV and ground truth are
0.83 and 0.59 for SDNN and RMSSD, respectively.
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Figure 6. SDNN correlation (a) and Bland-Altman (b) plots for WaveHRV compared with the ground
truth PPG device on the preprocessed UBFC rPPG dataset. A 95% confidence interval is marked
(in ms) in the Blant-Altman plot. Pearson correlation coefficient (r) and coefficient of determination
(R2) are given in correlation plot.
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Figure 7. RMSSD correlation (a) and Bland-Altman (b) plots for WaveHRV compared with the ground
truth PPG device on the preprocessed UBFC rPPG dataset. A 95% confidence interval is marked
(in ms) in the Blant-Altman plot. Pearson correlation coefficient (r) and coefficient of determination
(R2) are given in correlation plot.

Stoop dataset results (Figure 8) indicate that SDNN mean difference between WaveHRV
and ground truth is −0.29 ms, whereas the RMSSD mean difference is 4.03 ms. Hypothesis
testing between contact and camera HRV gives p-values of 0.83 and 0.09 for SDNN and
RMSSD respectively. It means that at a 95% CI, average WaveHRV SDNN and RMSSD are
not different from ground truth SDNN and RMSSD.
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Figure 8. Bland-Altman plots for WaveHRV compared with the ground truth PPG device on the
preprocessed Stroop dataset: (a) SDNN and (b) RMSSD. The 95% confidence intervals are marked
(in ms).

Furthermore, looking into Bland-Altman plots of the VIPL-HR dataset in Figure 9, it
can be observed that SDNN mean error is 1.44 ms (p-value = 0.02) and RMSSD −1.58 ms
(p-value = 0.06). Paired t-test reveals that at 95% CI mean WaveHRV SDNN is different
from the mean ground truth SDNN, while the mean WaveHRV RMSSD is equal to the mean
ground truth RMSSD. Finally, MAHNOB-HCI has SDNN−2.72 ms mean error and RMSSD
−8.5 ms mean error corresponding to p-values = 0.02 and 10−4 respectively. Statistical
Analysis at a 95% Confidence Interval implies that average WaveHRV SDNN and RMSSD
are different from average ground truth SDNN and RMSSD.
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5.3. Stress Measurement

The performance of WaveHRV on physiological stress-related metrics is given in
Table 5. To get better frequency resolution in frequency-domain metrics, videos that are
longer than 30 s are considered in this part. LF/HF is a metric of homeostasis and resilience
of the autonomous nervous system (ANS) to stress and anxiety. LF/HF values range
between 1–11.5 and Table 5 illustrates that LF/HF MAEs lie between 0.26–0.67. Therefore,
WaveHRV could be used to obtain LF/HF and has the potential to offer insights into the
balance and equilibrium of ANS.

Table 5. Baevsky SI and LF/HF performance of WaveHRV on Preprocessed Datasets.

Dataset Stroop UBFC rPPG VIPL-HR * MAHNOB-HCI *

MAE ± SD MAE ± SD MAE ± SD MAE ± SD

BaevskySI 38 ± 45 42 ± 35 98 ± 122 55 ± 65

LF/HF 0.67 ± 0.76 0.26 ± 0.32 0.43 ± 0.63 0.33 ± 0.39
* Videos that are longer than 30 s are considered.
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The Baevsky stress index (BaevskySI), also known as the strain index, characterizes
a person’s sympathetic nervous system activity (SNS) and is a good indicator of physical
and mental load. Table 5 reveals that the MAE of BaevskySI from the contact-based device
and WaveHRV is within 40–60 for UBFC rPPG, Stroop, and MAHNOB-HCI datasets, while
VIPL-HR has BaevskySI MAE ≈ 100. As mentioned above in Section 3.1, BaevskySI has
values between 50–1500, and looking at the results of WaveHRV, it can be inferred that our
algorithm can be utilized to categorize and identify different stress levels.

6. Discussion

It has been revealed that both the MAE and SD of VIPL-HR and MAHNOB-HCI
datasets have significantly dropped after the implementation of the data preprocessing step
mentioned in Section 4. The primary reason for this phenomenon is caused by disconnected
or poorly connected electrodes and pulse oximeters, slight motion of fingers inside pulse
oximeters, and motion during data collection.

Furthermore, from Table 4, we note that WaveHRV has lower MAEs on UBFC rPPG
and Stroop datasets than on challenging datasets like VIPL-HR and MAHNOB-HCI. UBFC
rPPG and Stroop are not compressed and have uniform ambient light, whereas VIPL-HR
and MAHNOB-HCI are compressed and recorded under non-uniform or dim lighting.
Moreover, in some scenarios of the VIPL-HR, subjects perform large head movements, talk,
or are sited further away from the camera.

Similar conclusions can be attained from statistical analyses and Bland-Altman plots:
when the subjects are not under frequent motion and in a well-lit environment like UBFC
rPPG and Stroop datasets, the average WaveHRV SDNN and RMSSD are similar to ground
truth SDNN and RMSSD. However, for more challenging, real-life scenarios where there is
significant motion and poor lighting conditions like VIPL-HR and MAHNOB-HCI, mean
WaveHRV results are different from mean ground truth results.

7. Conclusions

In this paper, we have presented WaveHRV, a novel algorithm for HRV extraction
from a portable camera. We benchmarked our algorithm against other methods and
demonstrated that WaveHRV outperforms other methods on publicly available datasets.
Furthermore, we presented a straightforward yet powerful technique to clean ground
truth data and highlighted its performance. We also demonstrated the potential for an
off-shelf camera to measure stress and mental well-being via the Baevsky stress index.
A further direction for this research would include the improvement of HRV algorithms
under challenging scenarios such as large head movements and dim lighting to reduce the
discrepancy between camera HRV and contact HRV. In addition, work could examine the
relationship between HRV and different stress, energy, and productivity metrics.
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